
BIBLIOGRAPHY 135
131 H.-Y. Su, Y. Gorlin, I. C. Man, F. Calle-Vallejo, J. K. Nørskov,
F. Jaramillo, and J. Rossmeisl, Identifying active surface phases for metal
oxide electrocatalysts: a study of manganese oxide bi-functional catalysts
for oxygen reduction and water oxidation catalysis., Physical chemistry
chemical physics, vol. 14, pp. 1401014022, Oct. 2012.
132 M. Bajdich, M. García-Mota, A. Vojvodic, J. K. Nørskov, and A. T. Bell,
Theoretical investigation of the activity of cobalt oxides for the electrochemical
oxidation of water., Journal of the American Chemical Society,
vol. 135, pp. 1352113530, Sept. 2013.
133 J. Greeley, J. Rossmeisl, A. Hellman, and J. K. Nørskov, Theoretical
Trends in Particle Size Eects for the Oxygen Reduction Reaction,
Zeitschrift für Physikalische Chemie, vol. 221, no. 9-10, pp. 12091220,
2007.
134 H. N. Nong, L. Gan, E. Willinger, D. Teschner, and P. Strasser, IrOx
core-shell nanocatalysts for cost- and energy-ecient electrochemical water
splitting, Chemical Science, vol. 5, pp. 29552963, 2014.
135 H. N. Nong, H.-S. Oh, T. Reier, E. Willinger, M.-G. Willinger, V. Petkov,
D. Teschner, and P. Strasser, Oxide-Supported IrNiOx Core-Shell Particles
as Ecient, Cost-Eective, and Stable Catalysts for Electrochemical
Water Splitting, Angewandte Chemie International Edition, vol. 54,
pp. 29752979, 2015.
136 H.-S. Oh, H. N. Nong, T. Reier, M. Gliech, and P. Strasser, Oxidesupported
Ir nanodendrites with high activity and durability for the oxygen
evolution reaction in acid PEM water electrolyzers, Chemical Science,
vol. 6, pp. 33213328, 2015.
137 R. Frydendal, E. A. Paoli, B. P. Knudsen, B. Wickman, P. Malacrida,
I. E. L. Stephens, and I. Chorkendor, Benchmarking the Stability of
Oxygen Evolution Reaction Catalysts: The Importance of Monitoring
Mass Losses, ChemElectroChem, vol. 1, pp. 20752081, Oct. 2014.
138 M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions,
1966.
139 J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-
Horn, A Perovskite Oxide Optimized for Oxygen Evolution Catalysis
from Molecular Orbital Principles, Science, vol. 334, pp. 13831385, Dec.
2011.
140 A. Grimaud, K. J. May, C. E. Carlton, Y.-L. Lee, M. Risch, W. T. Hong,
J. Zhou, and Y. Shao-Horn, Double perovskites as a family of highly
active catalysts for oxygen evolution in alkaline solution., Nature Communications,
vol. 4, p. 2439, Jan. 2013.