
The Journal of Physical Chemistry Letters Letter
(6) Liu, P.; Rodriguez, J. A. Catalysts for Hydrogen Evolution from
the NiFe Hydrogenase to the Ni2P (001) Surface: The Importance
of Ensemble Effect. J. Am. Chem. Soc. 2005, 127, 14871−14878.
(7) Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.;
Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured Nickel
Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction.
J. Am. Chem. Soc. 2013, 135, 9267−9270.
(8) Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D. C. B.; Fujita,
T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; et al. Enhanced
Catalytic Activity in Strained Chemically Exfoliated WS2 Nanosheets
for Hydrogen Evolution. Nat. Mater. 2013, 12, 850−855.
(9) Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin,
S. Enhanced Hydrogen Evolution Catalysis from Chemically
Exfoliated Metallic MoS2 Nanosheets. J. Am. Chem. Soc. 2013, 135,
10274−10277.
(10) Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.;
Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 Nanosheets
as Catalysts for Hydrogen Evolution Reaction. Nano Lett. 2013, 13,
6222−6227.
(11) Wang, H.; Lu, Z.; Kong, D.; Sun, J.; Hymel, T. M.; Cui, Y.
Electrochemical Tuning of MoS2 Nanoparticles on Three-dimensional
Substrate for Efficient Hydrogen Evolution. ACS Nano 2014, 8, 4940−
4947.
(12) Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.;
Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for
Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007,
317, 100−102.
(13) Enyashin, A. N.; Yadgarov, L.; Houben, L.; Popov, I.;
Weidenbach, M.; Tenne, R.; Bar-Sadan, M.; Seifert, G. New Route
for Stabilization of 1T-WS2 and MoS2 Phases. J. Phys. Chem. C 2011,
115, 24586−24591.
(14) Bollinger, M. V.; Jacobsen, K. W.; Nørskov, J. K. Atomic and
Electronic Structure of MoS2 Nanoparticles. Phys. Rev. B 2003, 67,
085410.
(15) Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.;
Nielsen, J. H.; Horsch, S.; Chorkendorff, I.; Nørskov, J. K. Biomemetic
Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen
Evolution. J. Am. Chem. Soc. 2005, 127, 5308−5309.
(16) Tsai, C.; A.-Pedersen, F.; Nørskov, J. K. Tuning the MoS2 Edge-
Site Activity for Hydrogen Evolution via Support Interactions. Nano
Lett. 2014, 14, 1381−1387.
(17) Enkovaara, J.; Rostgaard, C.; Mortensen, J. J.; Chen, J.; Dulak,
M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H. A.;
et al. Electronic Structure Calculations with GPAW: A real-space
Implementation of the Projector Augmented-wave Method. J. Phys.:
Condens. Matter 2010, 22, 253202.
(18) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the
Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758−
1775.
(19) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.
(20) Stevanovic, V.; Lany, S.; Zhang, X.; Zunger, A. Correcting
Density Functional Ttheory for Accurate Predictions of Compound
Enthalpies of Formation: Fitted Elemental-phase Reference Energies.
Phys. Rev. B 2012, 85, 115104.
(21) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-zone
Integrations. Phys. Rev. B 1976, 13, 12.
(22) Wellendorff, J.; Lundgaard, K. T.; Møgelhøj, A.; Petzold, V.;
Landis, D. D.; Nørskov, J. K.; Bligaard, T.; Jacobsen, K. W. Density
Functionals for Surface Science: Exchange-correlation Model Development
with Bayesian Error Estimation. Phys. Rev. B 2012, 85, 235149.
(23) Medford, A. J.; Wellendorff, J.; Vojvodic, A.; Studt, F.; A.-
Pedersen, F.; Jacobsen, K. W.; Bligaard, T.; Nørkov, J. K. Assessing the
Reliability of Calculated Catalytic Ammonia Synthesis Rates. Science
2014, 345, 197.
(24) Irikura, K. K. Experimental Vibrational Zero-Point Energies:
Diatomic Molecules. J. Phys. Chem. Ref. Data 2007, 36, 389.
(25) Linstrom, P. J., Mallard, W. NIST Chemistry WebBook; NIST
Standard Reference Database 69; National Institute of Standards and
Technology: Gaithersburg, MD, 1998.
(26) Kan, M.; Wang, J. Y.; Li, X. W.; Zhang, S. H.; Li, Y. W.;
Kawazoe, Y.; Sun, Q.; Jena, P. Structures and Phase Transition of a
MoS2 Monolayer. J. Phys. Chem. C 2014, 118, 1515−1522.
(27) Ataca, C.; ahin, H.; Ciraci, S. Stable, Single-Layer MX2
Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like
Structure. J. Phys. Chem. C 2012, 116, 8983−8999.
(28) Lin, Y.-C.; Dumcenco, D. O.; Huang, Y.-S.; Suenaga, K. Atomic
Mechanism of the Semiconducting-to-Metallic Phase Transition in
Single-Layered MoS2. Nat. Nanotechnol. 2014, 9, 391−396.
(29) Stokes, H. T.; Hatch, D. M. FINDSYM: Program for Identifying
the Space Group Symmetry of a Crystal. J. Appl. Crystallogr. 2005, 38,
237−238.
(30) Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.;
Narang, D. S.; Liu, K.; Ji, J.; Li, J.; et al. Monolayer Behaviour in Bulk
ReS2 Due to Electronic and Vibrational Decoupling. Nat. Commun.
2014, 5, 3252.
(31) Rossnage, K. On the Origin of Charge-Density Waves in Select
Layered Transition-Metal Dichalcogenides. J. Phys.: Condens. Matter
2011, 23, 213001.
(32) Dolui, K.; Sanvito, S. Dimensionality Driven Charge Density
Wave Instability in TiS2. arXiv 2013, arXiv:1310.1866v1 condmat.
mes-hall.
(33) Trasatti, S. Work Function, Electronegativity, and Electrochemical
Behaviour of Metals: III. Electrolytic Hydrogen Evolution in
Acid Solutions. J. Electroanal. Chem. 1972, 39, 163.
(34) Bockris, J. O.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern
Electrochemistry 2A, 2nd ed.; Kluwer Academic/Plenum Publishers:
New York, 1998.
(35) (a) Tsai, C.; Chan, K.; Nørskov, J. K.; Abild-Pedersen, F.
Understanding the Reactivity of Layered Transition-Metal Sulfides: A
Single Electronic Descriptor for Structure and Adsorption. J. Phys.
Chem. Lett. 2014, 5, 3884−3889. (b) Tsai, C.; Chan, K.; Nørskov, J.
K.; Abild-Pedersen, F. Theoretical Insights into the Hydrogen
Evolution Activity of Layered Transition Metal Dichalcogenides.
Surf. Sci. 2015, 10.1016/j.susc.2015.01.019.
(36) Seitz, L. C.; Chen, Z.; Forman, A. J.; Pinaud, B. A.; Benck, J. D.;
Jaramillo, T. F. Modeling Practical Performance Limits of Photoelectrochemical
Water Splitting Based on the Current State of
Materials Research. ChemSusChem 2014, 7, 1372.
(37) Mubeen, S.; Lee, J.; Singh, N.; Moskovitsb, M.; McFarland, E.
W. Stabilizing Inorganic Photoelectrodes for Efficient Solar-to-
Chemical Energy Conversion. Energy Environ. Sci. 2013, 6, 1633.
(38) Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C.
Materials Design and Discovery with High-Throughput Density
Functional Theory: The Open Quantum Materials Database
(OQMD). JOM 2013, 65, 1501−1509.
(39) Belsky, A.; Hellenbrandt, M.; Karen, V. L.; Luksch, P. New
developments in the Inorganic Crystal Structure Database (ICSD):
Accessibility in Support of Materials Research and Design. Acta
Crystallogr. 2002, B58, 364−369.
(40) Lebègue, S.; Björkman, T.; Klintenberg, M.; Nieminen, R. M.;
Eriksson, O. Two-Dimensional Materials from Data Filtering and Ab
Initio Calculations. Phys. Rev. X 2013, 3, 031002.
DOI: 10.1021/acs.jpclett.5b00353
J. Phys. Chem. Lett. 2015, 6, 1577−1585
1585